283 research outputs found

    Techniques for Providing Outstanding Customer Service

    Full text link
    Providing exceptional customer service should be one of the primary goals for all academic libraries. However, with the day- to- day interruptions, librarians sometimes forget all about customer service. By developing a Customer Service Task Force, Penfield Library has been able to develop a number of projects in the past two years to greatly improve its reputation. Such methods as surveys and small and large focus groups were conducted to determine what projects needed to be addressed. Tips and tricks to providing quality customer service in a small college/university library are also presented

    Causal discovery for the microbiome

    Get PDF
    Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseMeasurement and manipulation of the microbiome is generally considered to have great potential for understanding the causes of complex diseases in humans, developing new therapies, and finding preventive measures. Many studies have found significant associations between the microbiome and various diseases; however, Koch's classical postulates remind us about the importance of causative reasoning when considering the relationship between microbes and a disease manifestation. Although causal discovery in observational microbiome data faces many challenges, methodological advances in causal structure learning have improved the potential of data-driven prediction of causal effects in large-scale biological systems. In this Personal View, we show the capability of existing methods for inferring causal effects from metagenomic data, and we highlight ways in which the introduction of causal structures that are more flexible than existing structures offers new opportunities for causal reasoning. Our observations suggest that microbiome research can further benefit from tools developed in the past 5 years in causal discovery and learn from their applications elsewhere.Non peer reviewe

    Within-Host Bacterial Diversity Hinders Accurate Reconstruction of Transmission Networks from Genomic Distance Data

    Get PDF
    The prospect of using whole genome sequence data to investigate bacterial disease outbreaks has been keenly anticipated in many quarters, and the large-scale collection and sequencing of isolates from cases is becoming increasingly feasible. While sequence data can provide many important insights into disease spread and pathogen adaptation, it remains unclear how successfully they may be used to estimate individual routes of transmission. Several studies have attempted to reconstruct transmission routes using genomic data; however, these have typically relied upon restrictive assumptions, such as a shared topology of the phylogenetic tree and a lack of within-host diversity. In this study, we investigated the potential for bacterial genomic data to inform transmission network reconstruction. We used simulation models to investigate the origins, persistence and onward transmission of genetic diversity, and examined the impact of such diversity on our estimation of the epidemiological relationship between carriers. We used a flexible distance-based metric to provide a weighted transmission network, and used receiver-operating characteristic (ROC) curves and network entropy to assess the accuracy and uncertainty of the inferred structure. Our results suggest that sequencing a single isolate from each case is inadequate in the presence of within-host diversity, and is likely to result in misleading interpretations of transmission dynamics – under many plausible conditions, this may be little better than selecting transmission links at random. Sampling more frequently improves accuracy, but much uncertainty remains, even if all genotypes are observed. While it is possible to discriminate between clusters of carriers, individual transmission routes cannot be resolved by sequence data alone. Our study demonstrates that bacterial genomic distance data alone provide only limited information on person-to-person transmission dynamics

    Modelling bacterial speciation

    Get PDF
    A central problem in understanding bacterial speciation is how clusters of closely related strains emerge and persist in the face of recombination. We use a neutral Fisher–Wright model in which genotypes, defined by the alleles at 140 house-keeping loci, change in each generation by mutation or recombination, and examine conditions in which an initially uniform population gives rise to resolved clusters. Where recombination occurs at equal frequency between all members of the population, we observe a transition between clonal structure and sexual structure as the rate of recombination increases. In the clonal situation, clearly resolved clusters are regularly formed, break up or go extinct. In the sexual situation, the formation of distinct clusters is prevented by the cohesive force of recombination. Where the rate of recombination is a declining log-linear function of the genetic distance between the donor and recipient strain, distinct clusters emerge even with high rates of recombination. These clusters arise in the absence of selection, and have many of the properties of species, with high recombination rates and thus sexual cohesion within clusters and low rates between clusters. Distance-scaled recombination can thus lead to a population splitting into distinct genotypic clusters, a process that mimics sympatric speciation. However, empirical estimates of the relationship between sequence divergence and recombination rate indicate that the decline in recombination is an insufficiently steep function of genetic distance to generate species in nature under neutral drift, and thus that other mechanisms should be invoked to explain speciation in the presence of recombination
    corecore